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LETTER TO THE EDITOR

Dynamics in a dilute ferromagnet at the percolation threshold
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1 IFF des Forschungszentrums Jiilich, D-5170 Jilich 1, Federal Republic of Germany

Received 21 November 1991

Abstract. The dynamics of the spin autocorrelation function and the relaxation of the
magnetization in the Griffiths phase of the two-dimensional bond-diluted Ising model at
the percolation threshold are studied using Monte Carlo technigues. The resulis resolve
a previous ambiguity about the decay law.

Recently, the dynamics of random magnetic systems in the Griffiths phase has been
studied by clustering arguments and by Monte Carlo simulations. In particular, it
has been argued that the dilute two-dimensional Ising ferromagnet shows a peculiar
asymptotic temporal evolution of the spin autocorrelation function [1,2]

C(1) = (5;(0)S;(1)) ~ exp[—A(In 1)’] W

above the percolation threshold, p > p., at temperatures T.(p) < T < T, (p = 1),
where T_(p) is the phase transition temperature, and (1 — p) is the concentration of
missing bonds or sites; the amplitude A depends on the system parameters, such as
T and p.

This theoretical prediction has been compared to results of Monte Carlo simula-
tions [3-5] of the nearest-neighbour bond-diluted Ising model on a square lattice. Its
Hamiltonian may be written in the form

H= —ZJ;J-S,'SJ' (2)
iLj
where the exchange couplings J;; are chosen from the distribution
P(J; =(1=p)é(J;; = J) +pb(J;; = J). 3

Simulations have been performed for the case J’ = 0 and J = 1 at the percolation
threshold, p = p. = § [3,4] and slightly above p_ [5].

At the percolation threshold, the Monte Carlo data of both studies [3,4] have
been found to satisfy rather well a stretched exponential form, even at quite small
times '

C(t) ~ exp[—(t/7)"] (4)

up to the latest times monitored in the simulations. The exponent 5 turned out to
increase with temperature.

0305-4470/92/060283+04%04.50 (© 1992 IOP Publishing Lid 1283



L284 Letter to the Editor

Conspiciously, the results were claimed to be also consistent with the anomously
slow decay predicted by (1). At the latest times of those simulations, the Monte Carlo
data plotted as In(—1n C'} against In(In #) were observed to approach a straight line
of slope 2, see figure 2 of [3], and figure 11 of [4].

In this letter, we shall address this ambiguity by presenting results of simulations
on the bond-diluted Ising model, equations (2) and (3), with J' = 0 and J = 1 at the
percolation threshold, p = 4, in the Griffiths phase 0 € T < T.(1) = 2/In(v/2 +
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we monitored the spin autocorrelation function, C'(t), and, secondly, we recorded the
relaxation of the magnetization, M (i), from the ordered ground state, M(t = 0) =
1, to its equilibrium value, M (t = o0) = 0. Following the arguments by Colborne and
Bray [4], the non-equilibrium decay of the magnetization is expected to be described
by the same asymptotic time dependence as the equilibrium autocorrelation function.

To solve the problem, larger system sizes, lower temperatures and longer time
scales (up to a factor of about three) have been studied. To avoid posmble artefacts,
the Monte Carlo algorithm with random updating has been employed, in contrast to
the systematic sublattice updating, allowing for efficient vectorization [3, 4].

Specifically, systems of sizes 16%, 322, and 2562 with full periodic boundary
conditions were studied, with the number of samples ranging from several tens of
thousands to a few hundred. Computations were done on the entire percolation
lattice and not only on the backbone. Statistical error analyses were performed
on the number of samples in the standard way. The temperatures advanced from
T=1.0t0 T =1.5 in steps of 0.1.

The computations for C(t) were carried out on a special purpose computer at
the Landau Institute [6]; AZ(t) was determined on a scalar IBM computer in Jiilich.

Our main findings are summarized in figures 1 to 4. As depicted in figure 1, the
autocorrelation function can be fitted rather well by a stretched exponential form,
equation (4), with a temperature-dependent exponent 3, ranging from 3 =~ 0.32 at
T=1.0upto 8~ 0.52 at T = 1.5. The exponents are ‘effective’ ones, disregarding
the data at early times and keeping in mind the slight upward curvature in the data.
In the temperature range of the previous simulations, our estimated values for 3(7T')
are close to those obtained before using systematic sublattice updating [4].

By plotting In(—1n C) against In In ¢, see figure 2, one observes at early times an
increase of the slope towards two, in accordance with equation (1} and the previous
simulations. However, by extending the time scale beyond that of the previous simu-
lations, the slope continues to increase to values clearly larger than two. Therefore,
if equation (1) describes the asymptotic behaviour correctly, one seems to be still far
from that behaviour even at the latest time studied here. This fact is rather surpris-
ing, because equation (1) had been argued to be valid even in the time range of the
previous simulations [1,3].

The relaxation of the magnetization, M (1), shows the same characteristics as the
dynamics of C(t), as depicted in figures 3 and 4. Again, the stretched exponential
form describes the Monte Carlo data rather well. The estimated values for 3(T') are
appreciably higher than those obtained from the autocorrelation function, ranging
from 3~ 0.40 at T = 1.0 up to 8 = 0.59 at T' = 1.4. Again, the exponents have

to he internreted ag ‘effective’ anes. There are only minar chanoges in f-l due to the

be interpreted as ‘effective’ ones. There are only minor changes in 3 due to
random updating as compared to the systematic updating algonthm [4]. As has been
pointed out by Colborne and Bray [4], the differences in the values of 3 for C'(t) and
M(t) may pose severe problems for taking the stretched exponential form seriously
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as a candidate asymptotic form. On the other hand, as shown in figure 4, there is,
so far, no evidence that the decay law of (1) is approached. On the contrary, at the
latest times a strong upturn from the straight line of slope 2 occurs by replotting the
data in the form In(—1n M) against In(In t), even more drastically than in the case
of the autocorrelation function, figure 2. The upturn occurred for ali sizes studied,
16 € L < 256, in accordance with supposedly minor finite size effects.

In summary, the new Monte Carlo data, describing the dynamics of the autocor-
relation function and the relaxation of the magnetization, can be fitted quite well by
the stretched exponential form. There is no evidence for an even slower temporal
evolution on the time scales accessibie to the simulations presented here, resolving
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streched exponential behaviour violates a supposedly rigorous bound of the form (1)
on the uvitimate asymptotic decay law [1,2]; a similar remark applies to the work
by Ogielski on the simulation of spin glasses [7], which also did not encounter this
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constraint.) Currently, we are studying the effects caused by allowing for interactions
between clusters in taking J* > 0 (for critical properties, see [8]) and by moving away
from the percolation threshold, p # p,.

Useful discussions with VI S Dotsenko and D P Landau are gratefully acknowledged.
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