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LElTER TO THE EDITOR 

Dynamics in a dilute ferromagnet at the percolation threshold 
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t Landau Insritute for Theoretical Physics, GSP-I, Moscow V-334, Rmia 
1 IFF de. Forschunpzenlrums Jiilich, D-5170 Jhlich 1, Federal Republic of Germany 

Received 21 November 1991 

AbstncL The dynamics of the spin autocorrelation function and the relaxation of the 
magnelizalion in the Griffiths phase of the twodimensional bonddiluled king model at 
the percolation threshold are studied using Monte Carlo technique.. ?he results resolVC 
a previous ambiguity about the decay law. 

Recently, the dynamics of random magnetic systems in the Griffiths phase has been 
studied by clustering arguments and by Monte Carlo simulations. In particular, it 
has been argued that the dilute two-dimensional Ising ferromagnet shows a peculiar 
asymptotic temporal evolution of the spin autocorrelation function [l, 21 

C ( t )  = ( S i ( 0 ) S i ( t ) )  - exp[-A(1n t ) 2 ]  (1) 

above the percolation threshold, p 2 p,, at temperatures T ( ) < T < T'(p = l), 
where T'(p) is the phase transition temperature, and (1 - p) 1s the concentration of 
missing bonds or sites; the amplitude A depends on the system parameters, such as 
T and p. 

This theoretical prediction has been compared to results of Monte Carlo simula- 
tions [3-q of the nearest-neighbour bond-diluted Ising model on a square lattice. Its 
Hamiltonian may be written in the form 

c ?  

i , J  

where the exchange couplings J i j  are chosen from the distribution 

P( J i j  = ( 1  - p ) S (  J i j  - J ' )  + p 6 (  Ji l  - J )  . (3) 

Simulations have been performed for the case J' = 0 and J = 1 at the percolation 
threshold, p = pc = 4 [3,4] and slightly above p ,  [5 ] .  

At the percolation threshold, the Monte Carlo data of both studies [3,4] have 
been found to satisfy rather well a stretched exponential form, even at quite small 
times 

~ ( i )  - e x ~ [ - ( ~ / ~ ) ~ I  (4) 

up to the latest times monitored in the simulations. The exponent p turned out to 
increase with temperature. 
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Cnnspiciously, the results were claimed to be also consistent with the anomously 
slow decay predicted by (1). At the latest times of those simulations, the Monte Carlo 
data plotted as In(-In C) against ln(ln 1 )  were observed to approach a straight l i e  
of slope 2, see figure 2 of [3], and figure 11 of [4]. 

In this letter, we shall address this ambiguity by presenting results of simulations 
on the bonddiluted king model, equations (2) and (3), with J’ = 0 and J = 1 at the 
percolation threshold, p = f, in the GrifFiths phase 0 < T < T,( 1) = 2 /  In(* + 
we monitored the spin autocorrelation function, C(t) ,  and, secondly, we recorded the 
relaxation of the magnetization, M ( t ) ,  from the ordered ground state, M(1 = 0) = 
1, to its equilibrium value, M(l = cu) = 0. Following the arguments by Colborne and 
Bray [4], the non-equilibrium decay of the magnetization is expected to be described 
by the same asymptotic time dependence as the equilibrium autocorrelation function. 

Tb solve the problem, larger system sizes, lower temperatures and longer time 
scales (up to a factor of about three) have been studied. % avoid possible artefacts, 
the Monte Carlo algorithm with random updating has been employed, in contrast to 
the systematic sublattice updating, allowing for efficient vectorization [3,4]. 

Specifically, systems of sizes 162, 32’, and 256’ with full periodic boundary 
conditions were studied, with the number of samples ranging from several tens of 
thousands to a few hundred. Computations were done on the entire percolation 
lattice and not only on the backbone. Statistical error analyses were performed 
on the number of samples in the standard way. The temperatures advanced from 
T =  1.0 to T =  1.5 in steps of 0.1. 

The computations for C ( t )  were carried out on a special purpose computer at 
the Landau Institute [6]; M ( 1 )  was determined on a scalar IBM computer in Jiilich. 

Our main findings are summarized in figures 1 to 4. As depicted in figure 1, the 

equation (4), with a temperature-dependent exponent 0, ranging from p z 0.32 at 
T = 1.0 up to p z 0.52 at T = 1.5. The exponents are ‘effective’ ones, disregarding 
the data at early times and keeping in mind the slight upward curvature in the data. 
In the temperature range of the previous simulations, our estimated values for p( T) 
are close to those obtained before using systematic sublattice updating [4]. 

By plotting In( - In C) against In In 1, see figure 2, one observes at early times an 
increase of the slope towards two, in accordance with equation (1) and the previous 
simulations. However, by extending the time scale beyond that of the previous simu- 
lations, the slope continues to increase to values clearly larger than two. Therefore, 
if equation (1) describes the asymptotic behaviour correctly, one seems to be still far 
from that behaviour even at the latest time studied here. This fact is rather surpris- 
ing, because equation (1) had been argued to be valid even in the time range of the 
previous simuiarions ti, 3j. 

The relaxation of the magnetization, M ( 1 ) ,  shows the same characteristics as the 
dynamics of C ( t ) ,  as depicted in figures 3 and 4. Again, the stretched exponential 
form describes the Monte Carlo data rather well. The estimated values for P(T)  are 
appreciably higher than those obtained from the autocorrelation function, ranging 
from p z 0.40 at T = 1 .O up to p zz 0.59 at T = 1.4. Again, the exponents have 

random updating as compared to the systematic updating algorithm [4]. As has been 
pointed out by Colborne and Bray [4], the differences in the values of p for C(1) and 
M ( t )  may pose severe problems for taking the stretched exponential form Seriously 

1) = 2.269 . . . we s e d  FA’G rpp:orphes tc m i y  the &j!miS cf the mcde!. I%!$, 

axtarnrre!a!iQ,n t.!!ctb!! PI!! be fitted rather ne!! by 8 S!re!rhK! eqc!nenti?! form, 
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Flgum 1. In(-ln C) against h i ,  for 
the temperatures T = 1.0, 1.2, 1.3, 1.4, 
and 1.5, with size L = 256. The full 
lines c o m p a n d  to stretched exponential 
f o m ,  equation (4). 
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Figure 2. In(-ln C) against In(1n i). 
for the temperatures T = 1.0, 1.2, 1.3, 
1.4, and 1.5, with size L = 256. The 

-0.5 

- 1 .o full lines, included as guide8 to the eye, 
0.0 0.5 1.0 1.5 2.0 2.5 have slope 2, see equation (1). 

as a candidate asymptotic form. On the other hand, as shown in figure 4, there is, 
so far, no evidence that the d e q y  law of (1) is approached. On the contrary, at the 
latest times a strong upturn from the straight line of slope 2 occurs by replotting the 
data in the form In(- In M) against In(ln t ) ,  even more drastically than in the case 
of the autocorreiation function, figure 2. n e  upturn occurred for all sizes studied, 
16 < Z < 256, in accordance with supposedly minor finite size effects. 

In summary, the new Monte Carlo data, describing the dynamics of the autocor- 
relation function and the relaxation of the magnetization, can be fitted quite well by 
the stretched exponential form. There is no evidence for an even slower temporal 
evolution on the time scales accessible to the simulations presented here, resolving 

streched exponential behaviour violates a supposedly rigorous bound of the form (1) 
on the ultimate asymptotic decay law [1,2]; a similar remark applies to the work 
by Ogielski on the simulation of spin glasses [7], which also did not encounter this 

r h m  n m & n s . c  smh:n..:h, 9hnB.r  thn A e m u  In," ( A n  ;ntr;nii;nn 3c.nea-t remn;nc in t h m t  rha 
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Figure 3. In( - In M) against In t, for 
the temperatures T = 1.0, 1.2, and 1.4. 
with s k  L = 256 (data for T = 1.0 
with L = 32 are denoted ty c~oucs). 
The full l ine c o m p n d  to drekhed a- 
poncnlial forms. 

Figure 4. In(-In M) against In( lnt) ,  
for the temperatures T = 1.0, 1.2, 
and 1.4, wilh size L = 256 (data for 
T = 1.0 wilh L = 32 are denoted 
by cmsxs). The full lines. included as 
guider to the eye, have slope 2. 

constraint.) Currently, we are studying the effects caused by allowing for interactions 
between clusters in taking J' > 0 (for critical properties, see [SI) and by moving away 
from the percolation threshold, p # p,. 

Useful discussions with VI S Dotsenko and D P Landau are gratefully acknowledged. 
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